An Ensemble Learning Strategy for Graph
Clustering

Michael Ovelgonne and Andreas Geyer-Schulz

Institute of Information Systems and Management
Karlsruhe Institute of Technology
Karlsruhe, Germany
{michael.ovelgoenne, andreas.geyer-schulz}@kit.edu

Abstract. This paper is on a graph clustering scheme inspired by en-
semble learning. In short, the idea of ensemble learning is to learn several
weak classifiers and use these weak classifiers to determine a strong clas-
sifier. In this contribution, we use the generic procedure of ensemble
learning and determine several weak graph clusterings (with respect to
the objective function). From the partition given by the maximal over-
lap of these clusterings (the cluster cores), we continue the search for
a strong clustering. We demonstrate the performance of this scheme by
using it to maximize the modularity of a graph clustering. We show,
that the quality of the initial weak clusterings is of minor importance for
the quality of the final result of the scheme if we iterate the process of
restarting from maximal overlaps.

Keywords: graph clustering, ensemble learning

1 Introduction

Graph clustering, i.e. the identification of cohesive submodules or 'natural’ groups
in graphs, is an important technique in several domains. The identification of
functional groups in metabolic networks [8] and the identification of social groups
in friendship networks are two popular application areas of graph clustering.

Here we define graph clustering as the task of simultaneously detecting the
number of submodules in a graph and detecting the submodules themselves. In
contrast, we use the term graph partitioning for the problem of identifying a
parametrized number of partitions where usually additional restrictions apply
(usually, that all submodules are of roughly equal size). Two recent review ar-
ticles on graph clustering by Schaeffer [25] and Fortunato [5] provide a good
overview on graph clustering techniques as well as on related topics like evalu-
ating and benchmarking clustering methods.

Graph clustering by optimizing an explicit objective function became popular
with the introduction of the modularity measure [17]. Subsequently, a number of
variations of modularity have been proposed [14,11] to address shortcomings of
modularity such as its resolution limit [6]. The identification of a graph clustering

by finding a graph partition with maximal modularity is NP-hard [4]. Therefore,
finding clusterings of a problem instance with more than a few hundred vertices
has to be based on good heuristics. A large number of modularity optimization
heuristics has been proposed in recent years, but most of them have a poor
optimization quality.

The objective of this contribution is to present a new graph clustering scheme,
called the Core Groups Graph Cluster (CGGC) scheme, which is able to find high
quality clustering by using an ensemble learning approach. In [19] we presented
an algorithm called RG+ for maximizing the modularity of a graph partition
via an intermediate step of first identifying core groups of vertices. The RG+
algorithm was able to outperform all previously published heuristics in terms of
optimization quality. This paper deals with a generalization of this optimization
approach.

The paper has been organized in the following way. First, we briefly discuss
ensemble learning in Section 2. Then, we introduce the CGGC scheme in Section
3 and modularity maximization algorithms in Section 4. In Section 5, we evaluate
the performance of the CGGC scheme using modularity maximization algorithms
within the scheme. Finally, a short conclusion follows in Section 6.

2 Ensemble Learning

Ensemble based systems have been used in decision making for quite some time.
Ensemble learning is a paradigm in machine learning, where several intermediate
classifiers (called weak or base classifiers) are generated and combined to finally
get a single classifier. The algorithms used to compute the weak classifiers are
called weak learners. An important notion is, that even if a weak learner has only
a slightly better accuracy than random choice, by combining several classifiers
created by this weak learner, a strong classifier can be created [26]. For a good
introduction to this topic, see the review article by Polikar [21].

Two examples of ensemble learning strategies are bagging and boosting.
A bagging algorithm for supervised classification trains several classifiers from
bootstraps of the training data. The combined classifier is computed by simple
majority voting of the ensemble of base classifiers, i.e. a data item gets the label
the majority of base classifiers assigns to that data item. A simple boosting al-
gorithm (following [21]) works with classifiers trained from three subsets of the
training data. The first dataset is a random subset of the training data of arbi-
trary size. The second dataset is created so that the classifier trained with the
first dataset classifies half of the data items correctly and the other half wrong.
The third dataset consists of the data items the classifiers trained by the first
and the second dataset disagree on. The strong classifier is the majority vote of
the three classifiers.

Another ensemble learning strategy called Stacked Generalization has been
proposed by Wolpert [28]. This strategy is based on the assumption that some
data points are more likely to be misclassified than others, because they are near
to the boundary that separates different classes of data points. First, an ensemble

of classifiers is trained. Then, using the output of the classifiers a second level
of classifiers is trained with the outputs of the ensemble of classifiers. In other
words, the second level of classifiers learns for which input a first level classifier
is correct or how to combine the “guesses” of the first level classifiers.

An ensemble learning strategy for clustering has been used by Fred and
Jain [7], first. They called this approach evidence accumulation. They worked
on clustering data points in an Euclidean space. Initially, the data points are
clustered several times based on their distance and by means of an algorithm
like k-means. The ensemble of generated clusterings is used to create a new
distance matrix called the co-association matrix. The new similarity between
two data points is the fraction of partitions that assign both data points to the
same clustering. Then, the data points are clustered on basis of the co-association
matrix.

3 Core Groups Graph Clustering Scheme

Let us restrict our considerations to the problem of whether a pair of vertices
should belong to the same cluster or to different clusters. Making this decision is
complicated. Many algorithms get misled during their search so that sometimes
bad decisions are made. But what if we have one or more algorithms that find
several clusterings with fair quality but still a lot of non-optimal decisions on
whether a pair of vertices belongs to the same cluster? If all clusterings agree
on whether a pair of vertices belongs to the same cluster, we can be pretty sure
that this decision is correct. However, if the clusterings disagree, we should have
a second look at this pair.

Based on this considerations, we propose the CGGC scheme. We use the
agreements of several clusterings with fair quality to decide whether a pair of
vertices should belong to the same cluster. The groups of vertices which are
assigned to the same cluster in every clustering (i.e. the maximal overlaps of the
clusterings) are denoted as core groups. To abstract from any specific quality
measure, we use the term good partition for a partition that has a good quality
according to an arbitrary quality measure. The CGGC scheme consists of the
following steps:

. Create a set S of k good partitions of G with base algorithm A4
. Identify the partition P of the maximal overlaps in S

. Create a graph G induced by the partition P

. Use base algorithm Aj;nq; to search for a good partition of G

. Project partition of G back to G

T W N~

Initially, a set S of k partitions of G is created. That means, one non-
deterministic clustering algorithm is started k times to create the graph par-
titions, k deterministic but different algorithms are used or a combination of
both is used. In terms of ensemble learning, the used algorithms are the base al-
gorithms or weak learners and the computed clusterings are the weak classifiers.

Next, we combine the information of the weak classifiers: We calculate the
maximal overlap of the clusterings in S. Let cp(v) denote the cluster that vertex
¢ belongs to in partition P. We create from a set S of partitions {Py, ..., Py} of
V a new partition P of V so that

Vie [1Lk],v,w eV :cp(v) =cp(w) = cp(v) =cp(w) (1)
Ji € [1,k],v,w eV :cp,(v) # cp,(w) = cp(v) # cp(w) (2)

Extracting the maximum overlap of an ensemble of partitions creates an in-
termediate solution which is used as the starting point for the base algorithm
Afina to calculate the final clustering. The base algorithm used in this phase
could be an algorithm used in step 1 or any other algorithm appropriate to opti-
mize the objective function. For example, algorithms that are not able to cluster
the original network in reasonable time could be used to cluster the smaller
graph G = (V, E‘) induced by P. To create the induced graph, all vertices in a
cluster in P are merged to one vertex in G. Accordingly, G has as many vertices
as there are clusters in P. An edge (v,w) € E has the weight of the combined
weights of all edges in G that connect vertices in the clusters represented by v
and w. Then, the clustering of G would have to be projected back to G to get a
clustering of the original graph.

Agglomerative hierarchical optimization schemes often show the best scala-
bility for clustering algorithms as they usually make local decisions. While using
only local information increases the scalability, it is a source of globally poor de-
cisions, too. Extracting the overlap of an ensemble of clusterings provides a more
global view. Figure 1 shows the complete merge lattice of a complete graph of 4
vertices. An agglomerative hierarchical algorithm always starts with the parti-
tion into singletons (shown at the bottom) and merges in some way the clusters
until only one cluster containing all vertices remains (shown at the top). Every
merge decision means going one level up in the lattice. Restarting the search at
the maximal overlap of several partitions in an ensemble means to go back to
a point in the lattice from which all of the partitions in this ensemble can be
reached. If we restart the search for a good partition from this point, we will
most probably be able to reach other good partitions than those in the ensem-
ble, too. In fact, reaching other good or even better partitions than those in the
ensemble will be easier than starting from singletons as poor cluster assignments
in the ensemble have been leveled out.

3.1 The Iterated Approach

Wolpert [28] discussed the problem that some data points are harder to assign
to the correct cluster than others. Data points at the natural border of two
clusters are harder to assign than those inside. For the specific case of modularity
maximization with agglomerative hierarchical algorithms, we discussed in [20]
the influence of prior merge decision on all later merges. The order of the merge
operation influences which side of the border a vertex is assigned to.

(1234)

[[(a234 [{a2ne | [avee] [ayes] [aveny]| [wess|[]aszee]

N as——vaVi

iy w| [ayow[laveoe]lveye] | mesns | o s

kl) @6 (4}|

Fig. 1. Merge lattice of a complete graph with four vertices. The edges show the pos-
sible merge paths of hierarchical clustering algorithms.

With the help of the maximal overlaps of the CGGC scheme we try to sep-
arate the cores of the cluster from the boundaries. The harder decision on the
vertices at the boundaries are made, when the knowledge of the cores provides
additional information. This idea of separating cores and boundaries can be
iterated in the following way (subsequently denoted as the CGGCi scheme):

Set P¢st to the partition into singletons and set G to G

. Create a set S of k (fairly) good partitions of G with base algorithm A;pitial

. Identify the partition P of the maximal overlaps in S

. If P is a better partition than PPt set PY*st = P, create the graph G
induced by P and go back to step 2

. Use base algorithm Ay;nq; to search for a good partition of G

6. Project partition of G back to G

= w N

ot

In every new clustering P**** some more vertices or groups of vertices have
been merged or rearranged. So, every new clustering is likely to provide more
accurate information on the structure of the graph for the succeeding iterations.

4 Modularity and its Optimization

Modularity is a popular objective function for graph clustering that measures
the non-randomness of a graph partition. Let G = (V, E) be an undirected,
unweighted graph, n := |V| the number of vertices, m := |E| the number of edges
and P = {C1,...,Cy} a partition of V, i.e. UF_ C; = V and Vitjeq,..,3Ci N
C;j = 0. The modularity @ of the partition P of graph G is defined as

QG P) =50 3 (s = 52 dler v ervy) 3)

where w;, is an element in the adjacency matrix of G, s, is the degree of ver-
tex vz, cp(vy) is the cluster of v, in partition P and the Kronecker symbol

d(c(vs), c(vy)) = 1 when v, and v, belong to the same cluster and §(c(vy), c(vy)) =
0 otherwise.

Research on modularity maximization algorithms has been very popular in
the last years and a lot of heuristic algorithms have been proposed. In the fol-
lowing, we discuss a randomized greedy and a label propagation algorithm in
detail, as we will use them exemplarily to evaluate the CGGC scheme. We will
give a brief summary of other algorithms, which could be used as base algo-
rithms for the CGGC scheme as well. For an extensive overview on modularity
maximization algorithms see [5].

4.1 Randomized Greedy (RG)

Newman [15] proposed the first algorithm to be used to identify clusterings by
maximizing modularity. The hierarchical agglomerative algorithm starts with a
partition into singletons and merges in each step one pair of clusters that causes
the maximal increase in modularity. The result is the cut of the dendrogram with
the maximal modularity. This algorithm is slow as it considers to merge every
pair of adjacent clusters in every step. But this complete search over all adjacent
pairs also leads to an unbalanced merge process. Some clusters grow faster than
others and the size difference is a bias for later merge decisions. Large clusters
are merged with many small clusters in their neighborhood whether this is good
from a global perspective or not [20].

The randomized greedy algorithm [19] is a fast agglomerative hierarchical
algorithm that has a very similar structure to Newman’s algorithm but does not
suffer from an unbalanced merge process. This algorithm selects in every step a
small sample of z vertices and determines the best merge involving one of the
vertices in the sample (see Algorithm 1). Because of the sampling the algorithm
can be implemented quite efficiently and has a complexity of roughly O(mInn).

In [19] we also introduced the RG+ (improved randomized greedy) algorithm,
which we generalized to the CGGC scheme in this contribution. The RG+ al-
gorithm uses the RG algorithm as its base clustering algorithm to create the
weak classifiers and for the final clustering starting from the maximal overlap
of these partitions. To obtain a standardized naming of all other CGGC scheme
algorithms in this article we will denote this algorithms as CGGCrqg in the
following.

4.2 Label Propagation (LP)

Raghavan et al. [22] proposed a label propagation algorithm for graph clustering.
This algorithm initializes every vertex of a graph with a unique label. Then, in
iterative sweeps over the set of vertices the vertex labels are updated. A vertex
gets the label that the maximum number of its neighbors have. The procedure is
stopped when every vertex has the label that at least half of its neighbors have.
The pseudocode of the LP algorithm is shown in Algorithm 2.

This procedure does not explicitly or implicitely maximize modularity. It is
especially interesting, because it has a near linear time complexity. Every sweep

Algorithm 1 Randomized Greedy (RG) algorithm

Input: undirected, connected graph g, constant k
Output: clustering
V Initialize
forall v € V do
forall neighbors n of v do
| elv,n] < 1/(2 * edgecount)
alv] < rowsum(e[v])

¥ Build Dendrogram (Randomized Greedy)
for i = 1 to rank(e)-1 do
maxDeltaQ < —oo

for j = 1 to k do //search among k communities for best join
cl < random community

for all communities c2 connected to c1 do
delta@ < 2(e[cl, 2] — (alcl] % a[c2]))
if delta@ > mazDelta@ then
mazxDelta@Q < delta@
nextjoin < (cl,c2)

join(nextjoin)
| joinList < joinList + nextjoin
clusters < extractClustersFromJoins(joinList)

Algorithm 2 Label Propagation (LP) algorithm

Input: undirected, connected graph g, constant k
Output: clustering
V Initialize
forall v € V do
L label[v] + getUniquelD()

Vv Propagate Labels
majorityLabelCount < 0

while majorityLabelCount # |V| do
magjorityLabelCount < 0

forall v € V at random do

label[v] < argmaxy . . ;onpors(w) O (L, label[n])
1

if 3, cn(w 0L, label[n]) > [V|/2 then
L majority LabelCount < magjorityLabelCount + 1

has a complexity of O(m) and Raghavan et al. report that 95% of the vertices
have a label the majority of its neighbors have in only about 5 iterations.

As we will show in Section 5, the CGGC scheme is able to find good final
clusterings from weak results of intermediate runs of base algorithms. It does
not matter if the algorithm is stopped prior to its originally defined stopping
criterion.

4.3 Other Modularity Maximization Algorithms

A very fast agglomerative hierarchical algorithm has been developed by Blondel
et al. [2]. The algorithm starts with singleton clusters. Every step of the algorithm
consists of two phases. At first, all vertices are sequentially and iteratively moved
between their current and a neighboring cluster, if this increases the modularity.
In the case that several moves have a positive influence on the modularity, the
one with the highest modularity increase is chosen. To speed up this process, a
threshold is introduced to determine, when to stop the first phase based on the
relative increase in modularity. In the second phase of each step, the result of
the first phase is used to create a new graph, where all vertices that have been
assigned to the same cluster in the first phase are represented by one vertex.
The edge weights between the original vertices are summed up and give the new
edge weights between the new vertices. Then, the algorithm returns to the first
phase and moves the new vertices between clusters.

Another well performing algorithm is the MOME algorithm by Zhu et al.
[29]. In a first phase, the coarsening phase, the algorithm recursively creates
a set of graphs. Starting with the input graph, each vertex of the graph will
be merged with the neighbor that yields the maximal increase in modularity.
If the modularity delta is negative for all neighbors, the vertex will be left as
it is. The resulting graph will be recursively processed until the graph can not
be contracted any more. Subsequently, in the uncoarsening phase, the set of
successively collapsed graphs will be expanded while the clustering gets refined
by moving vertices between neighboring clusters.

Many other algorithms have been proposed. For practical usage and to be
used within the CGGC scheme most of them are of no interest due to their
inferior performance in terms of modularity maximization or runtime efficiency.
Among these algorithms are several spectral algorithms [27] [16] [23] [24] and
algorithms based on generic meta heuristics like iterated tabu search [13], sim-
ulated annealing [12] or mean field annealing [10]. Formulations of modularity
maximization as an integer linear programs (e.g. [1], [3]) allow finding an op-
timal solution without enumerating all possible partitions. However, processing
networks with as few as 100 vertices is already a major problem for current
computers.

Refinement The results of most modularity maximization algorithms can be
improved by a local vertex mover strategy. Noack and Rotta [18] surveyed the
performance of several strategies inspired by the famous Kernighan-Lin algo-
rithm [9]. We employ to the results of all evaluated algorithms the fast greedy

B [A AAADDDADNBDDNDDDDDBDD
S B
0
CD_ —
S o
A .
o | O\ A CGGCip
o ©] CGGCLP
2 o
S | <5
— O\O\O
o,
- "O-0.
@ — 0-0-¢
© "0-0-0-0
\ \ \ I
5 10 15 20
ensemble size

Fig. 2. Average modularity of 30 test runs of the CGGC- and CGGCi-scheme using LP
as the base algorithm subject to the ensemble size k for the dataset caidaRouterLevel.

vertex movement strategy, because all other strategies scale much worse with-
out providing significant improvements in quality. The fast greedy vertex mover
strategy sweeps iteratively over the set of vertices as long as moving a vertex to
one of its neighboring clusters improves modularity.

5 Evaluation

The clustering scheme is evaluated by means of real-world and artificial networks
from the testbed of the 10th DIMACS implementation challenge on graph par-
titioning and graph clustering. Memory complexity is a bigger issue than time
complexity for our algorithms and we had to omit the two largest datasets from
the category Clustering Instances because of insufficient main memory. We also
omitted the small networks with less than 400 vertices where many algorithms
are able to find the optimal partitions [19].

Before we conducted the evaluation, we first determined the best choice for
the number of partitions in the ensembles. The results of our tests (see Figure
3) show that the ensemble size should be roughly Inn for all algorithms but
CGGCLp. When using LP as the base algorithm, the quality improves with
increasing ensemble size for the iterated scheme but heavily decreases for the
non-iterated scheme (see Figure 2). This seems to be a result of the weak learning
quality of LP. A larger ensemble size results in more and smaller core groups
in the maximal overlap partition. LP is not able to find a good clustering from
finer decompositions when not iteratively applied as in the CGGCi scheme.

The results in Table 2 show the average optimization quality and therefore
the quality we can expect when using the algorithm in a practical context. In
Table 1 we show the boundary of the scheme, i.e. the best optimization quality
we were able to achieve using the scheme given much time.

10

PGPgiantcompo
o i, - - i - - - _ _
8 | /g:q}i%/e} o-0=%=¢"Y9-0 ®<0:¢
(o) = ,
S] ° CA-A-A A=A A-A-D~A
& NG ~A7 Sa-eT
_ A’A/ !
8 -
o
@
o ° $/
o
o |
3 A
© ‘ o CGGClRG
% | A CGGCiip
3 | + CGGCro
0 ,
g { T T \
5 10 15 20
ensemble size
caidaRouter L evel
N
&
o /E?»:Q:@:Q:QfQi@:Ql:Q:Q:LPiQ:Q:@:Q
o e i
0 ¢~ CNAND D N ADNN-ADDA
P / A,A’A AN-N-N ! A
o AN
% | N
o
o 5| 7
8 -
o
[o0)
(o)
o .
(=) o CGGCirg
B A CGGCILP
g] A + CGGCRG
{ T T \
5 10 15 20

ensemble size

Fig. 3. Average modularity of 30 test runs of the CGGC/CGGCi-scheme algorithms
subject to the ensemble size k for the two datasets PGPgiantcompo and caidaRouter-
Level. The dotted vertical line shows the value of In n (where n is the number of
vertices)

11

Table 1. Best modularity of a clustering computed for networks from the DIMACS
testbed categories Clustering Instances and Coauthors. All partitions have been iden-
tified with help of the CGGCi scheme and the denoted base algorithm.

Network Max Modularity Alg. Network Max Modularity Alg.
celegans_metabolic 0.4526664838 RG eu-2005 0.9415630621 RG
Email 0.5828085954 RG in-2004 0.9806076266 RG
PGPgiantcompo 0.8865501696 RG road_central 0.9976280448 RG
as-22july06 0.6783599573 RG road_usa 0.9982186002 RG
astro-ph 0.7444262906 RG caidaRouterLevel 0.8720295371 RG
cond-mat 0.8530972563 RG pref.Attach. 0.3048516381 RG
cond-mat-2003 0.7786823470 RG smallworld 0.7930994465 LP

cond-mat-2005 0.7464446826 RG G_n_pin_pout 0.5002934104 LP

hep-th 0.8565536355 RG citationCiteseer 0.8241257861 RG
netscience 0.9598999889 RG coAuthorsCiteseer ~ 0.9053559700 RG
polblogs 0.4270879141 RG coAuthorsDBLP 0.8415177919 RG
power 0.9404810777 RG coPapersCiteseer 0.9226201646 RG
cnr-2000 0.9131075546 RG coPapersDBLP 0.8667751453 RG

While the iterated CGGCi scheme does not provide much improvement com-
pared to the non-iterated scheme when used with the RG algorithm (CGGCigg
vs. CGGCRre), its improvement for the LP algorithm is significant (CGGC'ipp
vs. CGGCLp). There is still a difference between the CGGCirg and CGGClirp.
But for most networks, CGGC'i;,p achieves better results than the standalone
RG algorithm which showed to be a quite competitive algorithm [19] among
non-CGGC scheme algorithms.

A notable result is that the LP algorithm performs extremely bad on the
preferential Attachment network (pref. Attach.). This network is the result of a
random network generation process where iteratively edges are added to the
network and the probability that an edge is attached to one vertex depends
on the current degree of the vertex. The average modularity for the standalone
LP on the preferentialAttachment network is extremely low as the algorithm
identified only in 1 of 100 test runs a community structure. In all other cases the
identified clusterings were partitions into singletons. Therefore, using LP within
the CGGC scheme failed as well. However, we can argue that trying to find a
significant community structure in a random network should fail.

The clustering process of the iterated CGGC scheme is shown by example in
Figure 4. The LP algorithm is a much weaker learner than the RG algorithm and
initially finds clusterings with very low modularity. But after a few iterations the
modularity of the core groups of both base algorithms are about the same. But
although the quality of the final core groups for both base algorithms is similar,
the core groups are different. The final core groups identified from the ensemble
generated with the LP algorithm are a weaker restart point than those identified
with RG. If we use RG as the base algorithm for the final clustering (A finar)
to start from the LP core groups, the identified partitions have about the same

12

Table 2. Average modularity of the results of 100 test runs (10 test runs for very large
networks marked with *) on networks from the DIMACS testbed categories Clustering
Instances and Coauthors. CGGCx and CGGCix denote the usage of an base algorithm
X within the CGGC and the iterated CGGC scheme, respectively.

RG CGGCrc CGGCirag LP CGGCrLp CGGCiLp

celegans_metabolic 0.43674 0.45021 0.45019 0.37572 0.43856 0.44343

Email 0.57116 0.57986 0.58012 0.41595 0.55750 0.55668
PGPgiantcompo 0.86436 0.88616 0.88617 0.76512 0.85431 0.88565
as-22july06 0.66676 0.67742 0.67747 0.54930 0.61205 0.67316
astro-ph 0.69699 0.74275 0.74277 0.67511 0.70272 0.74143
cond-mat 0.82975 0.85240 0.85242 0.75661 0.79379 0.85116
cond-mat-2003 0.75715 0.77754 0.77755 0.67852 0.70551 0.77524
cond-mat-2005 0.72203 0.74543 0.74550 0.64184 0.67453 0.74199
hep-th 0.83403 0.85577 0.85575 0.76102 0.80614 0.85463
netscience 0.94037 0.95975 0.95974 0.92477 0.95375 0.95933
polblogs 0.42585 0.42678 0.42680 0.42610 0.42635 0.42633
power 0.92818 0.93962 0.93966 0.72124 0.79601 0.93794
cnr-2000 0.91266 0.91302 0.91309 0.86887 0.90603 0.91284
eu-2005 0.93903 0.94114 0.94115 0.85291 0.90610 0.93982
in-2004 0.97763 0.97832 0.98057 0.92236 0.97086 0.97791
road_central* 0.99716 0.99761 0.99767 0.70863 0.94351 0.99749
road_usa* 0.99786 0.99821 0.99825 0.72234 0.94682 0.99812
caidaRouterLevel 0.86136 0.86762 0.87172 0.76353 0.81487 0.87081
pref. Attach. 0.27984 0.29389 0.30099 0.00202 0.00000 0.00000
smallworld 0.78334 0.79289 0.79300 0.66687 0.69181 0.79307
G_n_pin_pout 0.47779 0.49991 0.50006 0.30609 0.34639 0.50023
citationCiteseer 0.80863 0.82333 0.82336 0.66184 0.72256 0.82064

coAuthorsCiteseer ~ 0.89506 0.90507 0.90509 0.79549 0.83862 0.90360
coAuthorsDBLP 0.82081 0.83728 0.84055 0.71502 0.75108 0.83661
coPapersCiteseer 0.91626 0.92168 0.92221 0.85653 0.89921 0.92162
coPapersDBLP 0.85383 0.86471 0.86655 0.77918 0.82674 0.86540

13

CGGCigc
0
c |4 ©
000000000000 Q
OOOOoOOOOOOOOOOOOOOOOOOOOOOO | 8
o 009 @
~ o
o o —
O
o
> o
2 8 | 0 o8
g o o modularity
-é on A #core groups —
o
© A | §
o AA
W
To) Y\ B
8 AAAAAAAAAA
o AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 8
O /AN I -}
N
\ \ \ \ \ \
0 10 20 30 40 50
iteration
CGGCiLp
Lo
™~ ~ o
o Ooooooooooooooooooooig
O
R o -
o
0 - 8
8 _ 8
> o
= o . Q
g 3 | o modularity |- 8
g o . A #eoregroups| ©
IS o
n L O
S o
A <
A
"‘O? — A VANN S
S AMNAANAANDNAADDAANDADADLADN *§
o A
\ \ \ \ \
5 10 15 20 25
iteration

Fig. 4. The clustering process of the iterated CGGCi scheme on the cond-mat-2005
dataset for the base algorithms RG (top) and LP (bottom). All points but the last
one are core groups, i.e. maximal overlaps of the k partitions in the ensemble. The
last points are the results for the final clustering run and after applying the refinement
procedure.

#core groups

#core groups

14

modularity than those identified with LP. Because of page limitations we omit
detailed results.

6 Conclusion

In this paper we have shown that learning several weak classifiers has a number
of advantages for graph clustering. The maximal overlap of several weak clas-
sifiers is a good restart point for further search. Depending on the viewpoint,
this approach can be regarded as a way to make first the ’easy’ decisions on
which pairs of vertices belong together and make "harder’ decisions not before
the unambiguous ones have been made. When looking at the search space, max-
imal overlaps seem to be capable of identifying those critical points from which
especially gradient algorithms can find good local maxima.

As it turned out, when using the CGGCi scheme, the choice of base algorithm
has no major impact on the clustering quality. This is an important notion.
Using the core groups scheme, the base algorithm(s) can be selected because
of other considerations. For example, for most so far developed algorithms for
modularity maximization an efficient implementation for distributed computer
environments (e.g. a Hadoop cluster) would be very hard. However, the label
propagation algorithm seems to be very suitable for this kind of environment.
Propagating labels requires only to pass the label information between the nodes
of a computer cluster. Thus, this algorithm can be used in the CGGCi scheme
and in a distributed computing environment to find high quality clusterings of
mega scale networks.

References

1. Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathe-
matical programming. European Journal of Physics B 66, 409-418 (2008)

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Ex-
periment 2008(10), P10008 (2008)

3. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z.,
Wagner, D.: On finding graph clusterings with maximum modularity. In: Graph-
Theoretic Concepts in Computer Science, pp. 121-132. Springer (2007)

4. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wag-
ner, D.: On modularity clustering. IEEE Transactions on Knowledge and Data
Engineering 20(2), 172-188 (2008)

5. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75-174
(2010)

6. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proceed-
ings of the National Academy of Sciences of the United States of America 104(1),
36—-41 (2007)

7. Fred, A.L.N., Jain, A.K.: Combining multiple clusterings using evidence accumu-
lation. IEEE Trans. Pattern Anal. Mach. Intell. 27, 835-850 (2005)

8. Guimera, R., Amaral, L.: Functional cartography of complex metabolic networks.
Nature 433, 895-900 (2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.
29.

15

Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal 49(1), 291-307 (1970)

Lehmann, S., Hansen, L.: Deterministic modularity optimization. The European
Physical Journal B - Condensed Matter and Complex Systems 60(1), 83-88 (2007)
Li, Z., Zhang, S., Wang, R.S., Zhang, X.S., Chen, L.: Quantitative function for
community detection. Phys. Rev. E 77(3) (2008)

Medus, A., Acuna, G., Dorso, C.: Detection of community structures in networks
via global optimization. Physica A: Statistical Mechanics and its Applications
358(2-4), 593-604 (2005)

Misevicius, A., Lenkevicius, A., Rubliauskas, D.: Tterated tabu search: an improve-
ment to standard tabu search. Information Technology and Control 35, 187-197
(2006)

Muff, S., Rao, F., Caflisch, A.: Local modularity measure for network clusteriza-
tions. Physical Review E 72(5), 056107 (2005)

Newman, M.E.J.: Fast algorithm for detecting community structure in networks.
Physical Review E 69(6), 066133 (2004)

Newman, M.E.J.: Modularity and community structure in networks. Proceedings
of the National Academy of Sciences of the United States of America 103(23),
8577-8582 (2006)

Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Physical Review E 69(2), 026113 (2004)

Noack, A., Rotta, R.: Multi-level algorithms for modularity clustering. In: Vahren-
hold, J. (ed.) Experimental Algorithms, Lecture Notes in Computer Science, vol.
5526, pp. 257-268. Springer Berlin / Heidelberg (2009)

Ovelgonne, M., Geyer-Schulz, A.: Cluster cores and modularity maximization. In:
ICDMW ’10. IEEE International Conference on Data Mining Workshops. pp. 1204—
1213 (2010)

Ovelgénne, M., Geyer-Schulz, A.: A comparison of agglomerative hierarchical algo-
rithms for modularity clustering. In: Advances in Data Analysis and Classification.
Springer Berlin / Heidelberg (2011), to appear

Polikar, R.: Ensemble based systems in decision making. Circuits and Systems
Magazine, IEEE 6(3), 21-45 (2006)

Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Physical Review E 76(3), 036106
(2007)

Ruan, J., Zhang, W.: An efficient spectral algorithm for network community discov-
ery and its applications to biological and social networks. In: ICDM 2007, Seventh
IEEE International Conference on Data Mining. pp. 643-648 (2007)

Ruan, J., Zhang, W.: Identifying network communities with a high resolution.
Physical Review E 77, 016104 (2008)

Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27-64 (2007)
Schapire, R.E.: The strength of weak learnability. Machine Learning 5, 197-227
(1990)

White, S., Smyth, P.: A spectral clustering approach to finding communities in
graphs. In: Proceedings of the Fifth SIAM International Conference on Data Min-
ing. pp. 274-285. STAM (2005)

Wolpert, D.H.: Stacked generalization. Neural Networks 5(2), 241 — 259 (1992)
Zhu, Z., Wang, C., Ma, L., Pan, Y., Ding, Z.: Scalable community discovery of
large networks. In: WAIM ’08: Proceedings of the 2008 The Ninth International
Conference on Web-Age Information Management. pp. 381-388 (2008)

